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and protective drugs in COVID-19,” by Pietro E. Cippà, Federica
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As the COVID-19 pandemic is spreading around the world, increas-
ing evidence highlights the role of cardiometabolic risk factors in
determining the susceptibility to the disease. The fragmented data
collected during the initial emergency limited the possibility of
investigating the effect of highly correlated covariates and of
modeling the interplay between risk factors and medication. The
present study is based on comprehensive monitoring of 576 COVID-19
patients. Different statistical approaches were applied to gain a com-
prehensive insight in terms of both the identification of risk factors and
the analysis of dependency structure among clinical and demographic
characteristics. The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus enters host cells by binding to the angiotensin-
converting enzyme 2 (ACE2), butwhether or not renin−angiotensin−al-
dosterone system inhibitors (RAASi) would be beneficial to COVID-19
cases remains controversial. The survival tree approach was applied to
define a multilayer risk stratification and better profile patient survival
with respect to drug regimens, showing a significant protective effect
of RAASi with a reduced risk of in-hospital death. Bayesian networks
were estimated, to uncover complex interrelationships and confound-
ing effects. The results confirmed the role of RAASi in reducing the risk
of death in COVID-19 patients. De novo treatment with RAASi in pa-
tients hospitalized with COVID-19 should be prospectively investigated
in a randomized controlled trial to ascertain the extent of risk reduction
for in-hospital death in COVID-19.

COVID-19 | survival tree | Bayesian network | RAAS

The need of discovering rapidly new findings on COVID-19
medications has been rushing publication, whereas the type

of data collected in emergency needed a further degree of cau-
tion in data management and analysis with respect to the usual
observational designed studies. Hence, in the recent literature,
standard statistical approaches often failed to provide reliable
and reproducible results and to control for the highly correlated
structure among covariates, while accounting for potential con-
founders in risk prediction (1).
COVID-19 is characterized by highly variable clinical mani-

festations and severity, ranging from asymptomatic to multiorgan
failure (2, 3). Older age and cardiovascular comorbidities are
among the most important risk factors influencing the virus−host
interaction and the clinical outcome of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection (4–6). Un-
derstanding the relationship between cardiovascular disease
(CVD), therapy, and COVID-19 outcomes is important to guide
clinical and public health interventions. Several treatment ap-
proaches, also in light of previous comorbidities, have been
adopted to reduce COVID-19 mortality in hospitalized patients.
Among other medications, renin−angiotensin−aldosterone sys-
tem inhibitors (RAASi) have been a major object of interest (7).

There are two major arms of RAAS; one arm, the Angiotensin II
(Ang II) type 1 receptor (AT1R) pathway, is proinflammatory
and can cause acute lung injury (8). The other arm, the
angiotensin-converting enzyme 2 (ACE2)−Ang-(1–7)−Mas re-
ceptor (MasR) pathway is anti-inflammatory because ACE2
metabolizes Ang II, thus reducing its levels and converting it to
the anti-inflammatory peptide, Ang-(1–7) (9). ACE2 is the re-
ceptor for coronaviruses, including SARS-CoV-2 (10). When
SARS-CoV-2 binds to ACE2, the enzyme is no longer func-
tional, and therefore the proinflammatory Ang II-AT1R is no
longer blocked by the ACE2−Ang-(1−7)−MasR pathway; this
imbalance can cause acute lung injury (11). RAASi have been
hypothesized to influence the clinical course of COVID-19 be-
cause of the role of ACE2 as a functional receptor for the virus
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entrance into the cells (12–14). Initially, some authors raised
concerns regarding the potential harm of RAASi in COVID-19,
but these were not confirmed, and, more recently, a potential
protective role was postulated, but until now not unequivocally
proven (11, 15–18).

Results
At the Ente Ospedaliero Cantonale COVID-19−dedicated hos-
pital, we implemented a systematic monitoring, of all admitted
COVID-19 patients, that included a predefined set of stan-
dardized clinical and laboratory parameters. The study pop-
ulation consisted of 576 hospitalized eligible patients admitted
between March 1, 2020 and May 1, 2020. Diagnosis of COVID-
19 was based on a positive nasopharyngeal swab specimen tested
with real-time RT-PCR assay or high clinical suspicion (as de-
fined in Materials and Methods). Demographic and clinical
characteristics of patients are shown in Table 1. Crude and ad-
justed hazard rates were estimated by univariate and multivariate
Cox regression analysis in order to identify significant predictors
of in-hospital death. In a univariate model age, history of cancer,
CVD, chronic kidney disease (CKD) as assessed by the esti-
mated glomerular filtration rate (eGFR), pneumonia on ad-
mission, and the prescription of nonsteroidal antiinflammatory
drugs (NSAIDs) were associated with increased risk of death. Fever
at presentation and the use of RAASi were associated with reduced
risk of death (SI Appendix, Table S1). Of the 576 patients, 436 had
complete records on all variables and were therefore included in a
multivariate model. Older age, history of cancer, CVD, and reduced
renal function variables were associated with a higher risk of death.

Therapy with NSAIDs and with antidiabetic agents was also associ-
ated with an increased risk of mortality, whereas RAASi were asso-
ciated with a markedly reduced risk of death (hazard ratio [HR], 0.34;
95% CI, 0.19 to 0.63; P < 0.001), as was therapy with anticoagulants
(HR, 0.29; 95% CI, 0.12 to 0.72; P = 0.008) (SI Appendix, Table S2).
To better understand the impact of RAASi, within a multivariate
regression framework, the effects of the two main classes of RAASi,
angiotensin converting enzyme inhibitor (ACEi) and angiotensin II
receptor blocker (ARB), have been also estimated. Both ACEi (HR,
0.45; 95% CI, 0.20 to 0.99; P = 0.0474) and ARB (HR, 0.28; 95% CI,
0.13 to 0.61; P = 0.0011) were shown to have a significant protective
effect.
To uncover natural and homogeneous groups of subjects with

similar survival outcome, we applied survival tree (ST) analysis
that considered all baseline characteristics and medications at
admission and during the hospitalization. The ST analysis se-
lected age, body mass index (BMI), renal function, and treat-
ment with RAASi and antibiotics as split variables, identifying
nine risk profiles (Fig. 1A). The main discriminant was age, with
a favorable outcome in patients ≤64 y old. RAASi were associ-
ated with a favorable outcome in patients >64 y old: The indi-
vidual risk was 0.66 in patients taking and 1.9 in those not taking
RAASi. Among patients >64 y old and taking RAASi,
patients >79 y old were found to be at higher risk of death, and
this risk increased further if an antibiotic therapy was required
during the hospitalization. Among patients >64 y old and not
taking RAASi, the factor associated with the highest mortality
risk was renal function: Those with an eGFR of <42 mL/min per
1.73 m2 at baseline displayed a 3.5-fold increased risk of death
compared to the rest of the cohort. Among patients aged be-
tween 64 and 79 y old and not taking RAASi and with an eGFR
of ≥42 mL/min per 1.73 m2, BMI of ≥24 kg/m2 was strongly
associated with death. Thus, the ST analysis identified the dif-
ferent patterns of metabolic and pharmacological risk profiles
associated with different clinical outcomes. Based on the HR in
the final nodes, leaves were grouped to obtain three risk strati-
fication categories: HR lower that 1 (n = 322, 63.5%), HR be-
tween 1 and 2 (n = 166, 21.6%), and HR higher than 2 (n = 88,
16.8%), showing a marked difference in terms of survival (P <
0.001; Fig. 1B). Furthermore, the ST analysis highlighted the role
of critical variables in the context of a multifactorial risk profile:
The role of RAASi was particularly intriguing because of their
beneficial effect particularly in patients at high risk (age
of >64 y).
To further validate the role of RAASi, we investigated whether a

risk profile built on baseline characteristics only and without treat-
ments still produced risk groups consistent with the protective impact
of RAASi. Within the new risk groups with different in-hospital
mortality (Fig. 2 A and B), the association between medication at
admission or during hospitalization and in-hospital mortality was
evaluated by means of Cox analysis. RAASi were associated with a
reduced risk of death (HR 0.34, 95%CI 0.19 to 0.63, P < 0.001), with
a significant association in both risk stratification groups (Fig. 2 C and
D). In contrast, NSAIDs were associated with a higher in-hospital
mortality (HR, 5.18; 95%CI, 2.77 to 9.72; P = 0.002; see SI Appendix,
Fig. S1). We did not find any association between therapy with
hydroxychloroquine and mortality.
To further investigate the relationships among COVID risk

factors and disease progression, Bayesian networks (BNs) were
implemented to explore the multivariate dependence structure.
The estimated BN is presented in Fig. 3A; for each node, the
table with estimated marginal probabilities is shown. RAASi,
age, and admission to the intensive care unit (ICU) showed a
direct effect on the outcome (direct edge). Hypertension showed
a direct effect on the admission to ICU and an indirect effect
mediated by RAASi and admission to ICU on the outcome
(Fig. 3A). The key feature of the BN is that it provides the op-
portunity to evaluate alternative, hypothetical scenarios. By

Table 1. Demographic and clinical characteristics of patients

Characteristics (n = 576) Overall

Female sex – no. (%) 218 (37.8)
Age, y 72.0 [60.0, 80.0]
BMI, kg/m2 (n = 439) 27.6 [24.4, 30.9]
BMI category – no. (%)

Normal 121 (27.6)
Obese 146 (33.2)
Overweight 165 (37.6)
Underweight 7 (1.6)

Coexisting conditions – no. (%)
Cancer 65 (11.3)
Diabetes 139 (24.1)
Hypertension 272 (47.2)
CVD 205 (35.6)
Chronic lung disease 96 (16.7)
CKD 197 (34.2)
eGFR category – no. (%)

<30 43 (7.5)
30 to 60 154 (26.9)
60 to 90 252 (44.0)
≥90 124 (21.6)

Presenting signs and symptoms – no. (%)
Pneumonia 306 (53.1)
Fever 450 (78.1)
Cough 371 (64.4)
Respiratory symptoms 282 (49.0)
Diarrhea 104 (18.1)
Intensive care – no. (%) 118 (20.5)
Outcome – no. (%)

Discharged 425 (73.8)
Dead 112 (19.4)
Not discharged 39 (6.8)

Values with [ ] are median and interquartile range, Cases of COVID-19
were diagnosed between March 1 and May 1, 2020.
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fixing the values of some nodes, it is possible to investigate how a
potential change in one crucial variable propagates to all other
variables and, in particular, to the target variable. Mortality
did not substantially change by modulating the variable hy-
pertension only, but the probability of death decreased in
hypertensive patients from 30 to 12% when we fixed the
treatment with RAASi (Fig. 3B). Similar results were obtained
when any CVD was considered instead of hypertension
(Fig. 3C). The analysis of the relationships between hyper-
tension, CVD, RAASi, and other antihypertensives showed
that the estimated probability of death for hypertensive pa-
tients treated with RAASi was equal to 10.9%, whereas, for
those treated only with other antihypertensive medications, it
was 33.2% (SI Appendix, Table S3). Similarly, in patients with
CVD treated with other antihypertensive agents, the proba-
bility of death was 36.8% compared to 13.4% in those treated
with RAASi (SI Appendix, Table S4).

Discussion
Our investigation confirms previous reports about the strong
association of older age, CVD, and CKD with death in COVID-
19 (15, 19).
Additionally, by integrating different methodological ap-

proaches, we show that RAASi appear to be highly protective in
patients infected with SARS-CoV-2 at increased risk of in-
hospital death. In contrast to other studies that used datasets
collected on an emergency basis, with a high degree of hetero-
geneity and highly correlated covariates, we took advantage of a
smaller but comprehensive dataset to specifically characterize
the interactions between cardiovascular risk factors, medication,
and outcome, by means of an integrated statistical approach.
This highlighted the need to consider a combination of variables
to accurately define the individual risk profile, as exemplified by
the cutoff to define the age at risk, which depended on comor-
bidities, likely reflecting the well-known but hardly measurable
difference between chronological and biological age. The mul-
tilayer definition of risk defined by the ST analyses (with and
without medication) represents a framework to implement the

principles of precision medicine in the management of the
COVID-19 pandemic, and can be used to identify patients at risk
in the context of clinical trials or public health interventions.
In a circumstance characterized by sparse data of low quality,

as in most COVID-19 case series, and of disease outcomes
strongly affected by confounding bias, obtaining reproducible
results to discern decision-making priorities in medication is
challenging. We implemented an accurate learning process by
approaching different scientific questions with different model-
ing strategies and by checking for consistency and reproducibility
of the conclusion. Different statistical approaches implemented
to explore the role of monitored demographic and clinical
characteristics on COVID-19 progression not only confirmed the
well-known strong association between older age, CVD, and
death in COVID-19 (19, 20) but also introduced a rigorous and
innovative way to study the impact of medication on survival
outcomes in a complex, real-life scenario. The integration and
modeling of clinical and pharmacological information provided a
different perspective for the evaluation of interconnected vari-
ables and introduced flexible models to assess, under different
scenarios, the effect of commonly used drugs after SARS-CoV-2
infection. Notably, in line with some recent studies (21), our
approach confirmed the lack of beneficial effects of hydroxy-
chloroquine in terms of mortality. The most important findings,
from a clinical perspective, are related to the deleterious effect
of NSAIDs, previously only inferred from pharmacovigilance
observations, and, most importantly, the protective effect of
RAASi. Since cardiovascular risk factors, baseline characteris-
tics, and medications are highly associated, with potential con-
founders dramatically affecting results, a conventional statistical
approach may not be appropriate to investigate these complex
interdependences. These methodological limitations may explain
the controversial findings reported to date on the role of RAASi
in COVID-19 (20, 22). Indeed, the beneficial effect of RAASi
has been masked by the high dependence on cardiovascular risk
factors in previous studies and might reflect a direct impact of
RAASi on the virus−host interaction, as previously observed in
experimental models of SARS-CoV−induced lung injury

Fig. 1. ST analysis (A) and Kaplan−Meier curves and log-rank test (B) for the three risk groups obtained from the ST analysis based on their HR computed in
the final nodes. The low-risk group includes those patients falling in final nodes with an HR lower than 1 (n = 322, 63.5%), patients in the medium-risk group
are those with an HR between 1 and 2 (n = 166, 21.6%), and patients in the high-risk groups are those with an HR higher than 2 (n = 88, 16.8%). The P value
associated with the log-rank test is also displayed.
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displaying a protective role of blocking the RAAS (11, 18). Be-
cause ACEi and ARB block two distinct pathways of the RAAS
activity, it could be assumed that, when SARS-CoV-2 binds to
ACE2, the conversion of Ang II to Ang-(1–7) by ACE2 is im-
paired, leading to an unhinged proinflammatory effect of Ang II.
On one hand, ACEi works by inhibiting the activity of ACE1,
therefore blocking the formation of the active peptide Ang II,
which is responsible for most actions of the RAAS. On the other
hand, ARBs block the interaction of Ang II with the AT1R and
cause a rise in Ang II levels, because of a positive feedback on
renin release. However, when the AT1R is blocked by ARBs,
Ang II can act via the Ang II type 2 receptor (AT2R) to produce

effects similar to those generated by the ACE2−Ang (1–
7)−MasR pathway (23), provided the ACE2 activity is not
blocked. Interestingly, a separate multivariate analysis of the
effect of the two main classes of RAASi in our cohort still
demonstrated a protective effect of either ACEi alone or ARBs
alone and no differential effect of a head-to-head comparison of
the two drugs.
Combining evidence provided by advanced multivariate

methods like ST and BN represents a robust methodological
frame to gain evidence from the data on the complex relation-
ships among variables in different scenarios that cannot be
interpreted with standard statistical models (24, 25), thereby

Fig. 2. ST analysis without medications as input variables (A) and Kaplan−Meier curves and log-rank test (B) for the two risk groups obtained from the ST
analysis based on their HR computed in the final nodes. The low-risk group includes those patients falling in final nodes with an HR lower that 1 (n = 391,
67.8%), and patients in the high-risk groups are those with an HR higher than 2 (n = 185, 32.12%). The P value associated with the log-rank test is also
displayed. Kaplan−Meier curves and log-rank test for the low-risk group (C) and the high-risk group (D) identified by the ST analysis without medications as
input variables. Analysis aimed at examining the differences between patients treated with and without RAAS blockers in the two risk groups. The P value
associated with the log-rank test is also displayed.
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opening opportunities to make use of case series to guide public
health interventions and to identify drugs with a potential ben-
eficial effect to be evaluated in precisely designed prospective

clinical trials. Such trials should not be limited to hypertensive
patients, since the blood pressure-lowering effect of RAASi in
subjects with a normal baseline blood pressure is negligible (26).

Fig. 3. Bayesian network analysis (A) exploring the dependence structure of the data. Conditional probabilities of the target variable (in-hospital death)
given several scenarios by fixing hypertension and RAASi (B) and CVD and RAASi (C).
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Materials and Methods
Data Source and Collection. The study was supported by the Ente Ospedaliero
Cantonale and approved by the Ethical Committee of the Canton of Ticino,
Switzerland. Written informed consent was waived because of the urgent
need to collect data.

The study population consisted of 576 hospitalized patients admitted
between March 1, 2020 and May 1, 2020 that were included in a systematic
monitoring of admitted patients. Diagnosis of COVID-19 was based on a
positive nasopharyngeal swab specimen tested with real-time RT-PCR assay
targeting the envelope (env), nucleocapsid (N), and RNA-dependent RNA
polymerase (RdRp) genes of SARS-CoV-2. Patients with a high level of
suspicion of COVID-19 who had a negative RT-PCR of the nasopharyngeal
swab were considered to have COVID-19 if a low-dose CT scan confirmed
bilateral and subpleural areas of ground-glass opacification, consolida-
tion affecting the lower lobes, or both (27). In these patients, the diag-
nosis was later confirmed using RT-PCR assay from subsequent
nasopharyngeal swab specimen, lower respiratory tract aspirates, or fecal
sample. During the study period, access to the ICU at our hospital has
never been limited.

A systematic monitoring of all hospitalized COVID-19 patients, including
standardized clinical assessment and comprehensive blood analyses at ad-
mission and every 48 h during hospitalization, was established. The recorded
data at the time of admission included the following: age, sex, weight,
height, medical coexisting conditions, and signs and symptoms of COVID-19
at the time of admission. All clinical and laboratory parameters were
extracted from the electronic medical records after checking for matching,
outliers, accuracy, precision, and bias by data managers and clinicians. An
accurate coding has been done to distinguish drugs taken by the patients at
admission and drugs prescribed during hospitalization. Throughout the
admission, prescribed drug therapy was determined by the clinical staff in
charge of the patient and was not influenced by the study. Particularly, we
did not provide any recommendations regarding the introduction or the
withdrawal of RAASi, which were mostly further administered during the
hospitalization. Single medications were grouped into the following classes,
which were subsequently analyzed: RAASi (including renin inhibitors, ACEi,
and ARBs), aldosterone antagonists, other antihypertensive drugs, NSAIDs,
acetaminophen, oral antidiabetic drugs, insulins, lipid-lowering drugs, anti-
platelets, coumarin anticoagulants, direct acting anticoagulants, antibiotics,
corticosteroids, immunosuppressants, hydroxychloroquine, and lopinavir/
ritonavir.

Statistical Methods. Standard and advanced statistical approaches have been
implemented to investigate the role of both demographic and clinical
characteristics as risk/protective factors for COVID-19 progression, thus de-
riving different risk profiles, and to explore and disentangle the complex
interrelationships among these variables on the clinical outcome.

Univariate and multivariate Cox regression models were estimated, after
testing proportionality assumption, to examine how covariates affect hazard
rate and to identify factors that significantly affect risk of death. As previously
reported (28), this was considered the most appropriate approach, since
COVID-19 is characterized by a time interval (from admission or from first
symptom), which would not be considered in a multivariate logistic regres-
sion. Demographic characteristics, comorbidities, pneumonia, and drug
therapy were entered in the model as covariates, and the results were
reported as HR with 95% CIs. Univariate P values were adjusted to control
the family-wise error rate (29).

To profile subjects with similar survival outcome, ST analysis, a statistical
learning approach that builds classification trees with respect to survival
endpoints, was applied using, as independent variables, the same covariates
entered in the Cox models (30). STs were applied to profile patients with

respect to risk of death and to disentangle the role of highly dependent
covariates on risk stratification. In a data-driven approach, which general-
ized standard classification trees (24), the best predictors with the best
thresholds are selected by the iterative algorithm to identify homogeneous
subgroups of patients. Herein, trees are used in a twofold perspective: ex-
ploratory and predictive (31, 32). From one side, we focus on the search for
those variables (and corresponding cutoffs) that best discriminate among
patients based on their survival outcome. However, trees-based procedures
are prone to overfitting. For this reason, in the tree-building phase, we have
imposed a constraint by fixing the minimum number of observations in any
terminal node at 20. This choice was motivated by the need to have enough
observations in the nodes to properly carry out further analyses. Actually,
following ST analysis, the Kaplan−Meier method was used to estimate
overall survival for each risk profile, and log-rank test has been applied to
compare survival among groups of patients defined based on the
medications.

Finally, according to a reproducibility and replicability perspective inten-
ded as the ability of independent researchers to obtain the same result using
different methodological frames, we check for consistency of results among
different statistical models: The BN approach was used to evaluate the de-
pendence structure among all variables included in the Cox multivariate
model. This is an essential step to uncover complex interrelationships among
variables and to gain a better insight into mechanisms involved in COVID-19
disease progression. BNs implement a graphical model structure, known as a
directed acyclic graph, defined by a set of nodes, representing random
variables, and a set of arcs, implying direct dependencies among the vari-
ables. They enable an effective representation and computation of a joint
probability distribution over a set of random variables (33).

The purpose of using BN in this research is to learn dependence structure
directly from data, while excluding some directions among variables that are
not consistent with the very nature of the data. These are the so-called
“blacklists” directions, arcs, which are not allowed in the network. In this
analysis, we specified only blacklists as illustrated in SI Appendix, Fig. S2.
Variables included in the same box are free to learn the type of interactions
directly from the data. The only relationships among variables in different
boxes that are allowed are those indicated by arrows in SI Appendix, Fig. S2.
Otherwise, relationships among variables in different boxes are forbidden
(for example, comorbidities cannot influence demographics characteristics).

The network has been estimated from data by a hill climbing algorithm
with Akaike information criterion score functions. On the basis of the esti-
mated network, various diagnostic checks have been performed to investi-
gate the effects of evidence on the distribution of the target variable using
“what-if” sensitivity scenarios (34).

All of the analyses were performed using R statistical software (version
3.5.2; https://cran.r-project.org/index.html). The R package rpart was used to
implement the ST analysis: The procedure applies the LeBlanc and Crowley
splitting rule (35). The R packages bnlearn (36) and gRain (37) were used to
learn the network and perform the inference required to calculate the
conditional probabilities.

Data Availability. Anonymized data have been deposited in The Open Science
Framework at https://osf.io/sj4zu. The password to open the file will be
provided by the authors upon request.
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